Our Planet

Why we should colonize Mars (and other planets and the satellites too)


Alex Kuzoian and Jessica Orwig of Business Insider has prepared a video titled “Here’s why Elon Musk wants to colonize Mars”. In the video, we see some reasons why we should colonize Mars someday.

The summary of the video:

The poles of Mars
The planet Mars has two permanent polar ice caps. During a pole’s winter, it lies in continuous darkness, chilling the surface and causing the deposition of 25–30% of the atmosphere into slabs of CO2 ice (dry ice). When the poles are again exposed to sunlight, the frozen CO2 sublimes, creating enormous winds that sweep off the poles as fast as 400 km/h. These seasonal actions transport large amounts of dust and water vapor, giving rise to Earth-like frost and large cirrus clouds. Clouds of water-ice were photographed by the Opportunity rover in 2004.
The caps at both poles consist primarily of water ice. Frozen carbon dioxide accumulates as a comparatively thin layer about one metre thick on the north cap in the northern winter only, while the south cap has a permanent dry ice cover about 8 m thick. Photo: windows2universe.org

Some other reasons


  1. The greenhouse effect is the process by which radiation from a planet’s atmosphere warms the planet’s surface to a temperature above what it would be without its atmosphere. If a planet’s atmosphere contains radiatively active gases (i.e., greenhouse gases, Water vapor (H2O), Carbon dioxide (CO2), Methane (CH4), Nitrous oxide (N2O), Ozone (O3) and Chlorofluorocarbons -CFCs-) the atmosphere will radiate energy in all directions. Part of this radiation is directed towards the surface, warming it. The downward component of this radiation – that is, the strength of the greenhouse effect – will depend on the atmosphere’s temperature and on the amount of greenhouse gases that the atmosphere contains.
  2. Cyanobacteria also known as Cyanophyta, is a phylum of bacteria that obtain their energy through photosynthesis. The name “cyanobacteria” comes from the color of the bacteria (Greek: κυανός (kyanós) = blue).By producing gaseous oxygen as a byproduct of photosynthesis, cyanobacteria are thought to have converted the early reducing atmosphere into an oxidizing one, causing the “rusting of the Earth” and causing the Great Oxygenation Event, dramatically changing the composition of life forms on Earth by stimulating biodiversity and leading to the near-extinction of anaerobic organisms (that is, oxygen-intolerant). Symbiogenesis argues that the chloroplasts found in plants and eukaryotic algae evolved from cyanobacterial ancestors via endosymbiosis.